

Prepared & Presented by: Mr. Mohamad Seif

1 Introduction about types of motion

- 2 Identify the types of rectilinear motion
- 3 Study the Uniform Rectilinear Motion (URM)

Types of rectilinear motion Types of motion **Translational** Rotational **Combined** motion motion motion **Rectilinear motion Curvilinear motion Circular motion**

Types of rectilinear motion **Rectilinear motion Uniformly Varied Uniform Rectilinear Rectilinear motion (UVRM)** motion (URM) **Uniformly Accelerated Rectilinear** motion (UARM) **Uniformly decelerated Rectilinear** motion (UDRM)

During the time interval τ , a motion is said to be U. R. M if:

- The distance covered during equal interval of time are equal: $A_0A_1 = A_1A_2 = A_2A_3 = \cdots$
- The velocity is constant $(V_1 = V_2 = \cdots)$,
- The acceleration is zero $(a_1 = a_2 = 0)$,

Time equation Motion of URM:

Where V is the slope of the obtained curve

Application 1:

- Consider a moving particle with a time equation of motion given by: x = 1.5t + 0.5 where x in m & t in sec.
- 1. Specify the nature of motion of the particle.
- 2. Determine the initial position x_0 at $t_0 = 0$ and the speed V.
- 3. Calculate the positions: x_1 , x_2 , x_3 and x_4 at $t_1 = 1$ s, $t_2 = 2$ s, $t_3 = 3$ s, and at $t_4 = 4$ s, respectively.
- 4. Represent graphically x as a function of t.
- 5. Determine the acceleration of the particle.

$$x = 1.5t + 0.5$$

- 1. Specify the nature of motion of the particle.
- The motion is URM, because the given time equation in the form of $x = Vt + x_0$
- 2. Determine the initial position x_0 at $t_0 = 0$ and the speed V

$$\begin{cases} x = Vt + x_0 \\ x = 1.5t + 0.5 \end{cases}$$

$$V=1.5m/s$$

Compare the two equations:

$$x_0 = 0.5m$$

$$x = 1.5t + 0.5$$

3. Calculate the positions: x_1 , x_2 , x_3 and x_4 at $t_1 = 1$ s, $t_2 = 2$ s, $t_3 = 3$ s, and at $t_4 = 4$ s, respectively.

For
$$t_1 = 1s$$
:
 $x_1 = 1.5(1) + 0.5$
 $x_1 = 1.5 + 0.5 = 2m$

For
$$t_2 = 2s$$
:
 $x_2 = 1.5(2) + 0.5$
 $x_2 = 3 + 0.5 = 3.5m$

For
$$t_3 = 3s$$
:
 $x_3 = 1.5(3) + 0.5$

$$x_3 = 4.5 + 0.5 = 5m$$

For
$$t_4 = 4s$$
:
 $x_4 = 1.5(4) + 0.5$

$$x_4 = 6 + 0.5 = 6.5m$$

4. Represent graphically x as a function of t.

Scale:

- $x axis: 1cm \rightarrow 1s$
- $y axis: 1cm \rightarrow 2m$

t(s)	1	2	3	4
x(m)	2	3.5	5	6.5

5. Determine the acceleration of the particle.

The motion is URM then:

The speed is constant:
$$V_1 = V_2 = V_3 = \cdots$$

$$a = \frac{V_3 - V_1}{t_3 - t_1} = \frac{1.5 - 1.5}{3\tau - \tau}$$

$$a_3 = 0m / s^2$$

Application 2:

A puck moves on a horizontal air table with initial speed V_0 . Given $A_0A_1=A_1A_2=\cdots=4cm$.

The figure below shows the registrations of the puck during constant time interval $\tau = 50ms$.

- 1. Calculate the instantaneous speeds V_1 , V_3 and V_5 at A_1 , A_3 and A_5 respectively.
- 2. Calculate the instantaneous acceleration a_4 .
- 3.Deduce is the nature of motion. Justify.
- 4. Write the time equation of motion.

1. Calculate the instantaneous speeds V_1 , V_3 and V_5 at A_1 , A_3 and A_5 respectively

$$V_1 = \frac{A_0 A_2}{t_2 - t_0} = \frac{A_0 A_2}{2\tau - 0}$$

$$V_1 = \frac{(4 + 4) \div 100}{(2 \times 50) \div 1000}$$

$$V_1 = 0.8m/s$$

1. Calculate the instantaneous speeds V_1 , V_3 and V_5 at A_1 , A_3 and A_5 respectively

$$V_3 = \frac{A_2 A_4}{t_4 - t_2} = \frac{A_2 A_4}{4\tau - 2\tau}$$

$$V_3 = \frac{(4+4) \div 100}{(2 \times 50) \div 1000}$$

$$V_3 = 0.8m/s$$

1. Calculate the instantaneous speeds V_1 , V_3 and V_5 at A_1 , A_3 and A_5 respectively

$$V_5 = \frac{A_4 A_6}{t_6 - t_4} = \frac{A_4 A_6}{6\tau - 4\tau}$$
 $V_5 = \frac{(4+4) \div 100}{(2 \times 50) \div 1000}$

$$V_5 = 0.8m/s$$

2. Calculate the instantaneous acceleration a_4 .

$$a_4 = \frac{V_5 - V_3}{t_5 - t_3}$$

$$a_4=\frac{0.8-0.8}{2\tau}$$

$$a_4 = 0 m / s^2$$

3. What is the nature of motion. Justify.

The velocity is constant at V = 0.8m/s and $a = 0m/s^2$, then the motion is URM

4.Write the time equation of motion.

$$EMx = Vt + x_0$$

$$x = 0.8t$$

Prepared & Presented by: Mr. Mohamad Seif

1 Study the Uniformly Accelerated Rectilinear Motion (UARM)

ACADEMY

A motion is said to be U.A.R.M if the <u>acceleration is</u> positive & constant (a > 0).

• The distance covered during equal interval of time increase:

$$A_3A_4 > A_2A_3 > A_1A_2$$

• The speed at different instants increases with time:

$$V_3 > V_2 > V_1$$

Time equation Motion in distance x:

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

- a: acceleration of motion of the body in m / s^2 .
- V_0 : initial speed of the body at the starting point in m/s.
- x_0 : The initial position of the body at the starting point in m.
- t: The time between initial point and reached point, in seconds

The speed time equation:

$$\mathbf{v} = \mathbf{at} + \mathbf{v_0}$$

The Relation of V and x is:

$$v^2 - v_0^2 = 2a(x - x_0)$$

Application 3:

- Consider a moving body, moves according the time equation of motion: $x = 4 t^2 + 10t + 2$
- 1. Specify the nature of motion? Justify.
- 2. Determine the value of V_0 and x_0 .
- 3. Calculate the value of the acceleration.
- 4. Write the speed time equation
- 5. Determine the position of body at t = 1s.
- 6. Calculate the speed when the body covers a distance
 - = 12m.

$$x = 4 t^2 + 10t + 2$$

1. Specify the nature of motion? Justify.

The motion is U.A.R.M, because the given equation $(x = 4t^2 + 10t + 2)$ in the form of $x = \frac{1}{2}at^2 + V_0t + x_0$, where a > 0.

Be Smart ACADEMY

2. What is the value of V_0 , x_0 , & a.

Compare the two equations:

$$x = 4 t^2 + 10t + 2$$
 And

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

$$V_0 = \frac{10m}{s}$$

$$ACADEMY$$

3. Calculate the value of the acceleration.

$$\begin{cases} x = 4t^2 + 10t + 2 \\ x = \frac{1}{2}at^2 + V_0t + x_0 \end{cases}$$

$$4 = \frac{1}{2}a \implies \frac{4}{1} \times \frac{1 \times a}{2} \implies \frac{4 \times 2}{2} = 1 \times 1 \times a$$

$$ACADEMY$$

$$a = 8m / s^2$$

4. Write the speed time equation.

$$V = at + V_0$$

$$V_0 = 10m/s \text{ and } a = 8m/s^2$$

$$V=8t+10$$

5. Determine the position of body at t = 1s

$$x = 4 t^2 + 10t + 2$$

$$x = 4(1)^2 + 10(1) + 2$$

$$x = 16m$$

6. Calculate the speed when the body covers a distance

$$x = 12m.$$

$$V^{2} - V_{0}^{2} = 2ax$$
 $V^{2} - (10)^{2} = 2 \times 8 \times 12$

$$V^{2} - 100 = 192$$

$$V^{2} = 192 + 100$$

$$V^{2} = 292$$

$$V = \sqrt{292}$$

 $V \simeq 17m/s$

Application 4:

A puck moves along a on a horizontal line starting from A_0 . The time intervals between successive points is $\tau = 100ms$ as shown in the figure below.

- 1. Calculate the instantaneous speeds of the puck V_1 , V_2 and V_4 at A_1 , A_2 and A_4 respectively.
- 2. Calculate the instantaneous acceleration a_3 of the puck.
- 3.Deduce the nature of motion of the puck.
- 4. Calculate the value of the initial speed V_0 .
- 5. Write the expressions of the time equations x(t) and V(t) of the motion of the puck.

1. Calculate the instantaneous speeds of the puck V_1 , V_2 and V_4 at A_1 , A_2 and A_4 respectively.

$$V_1 = \frac{A_0 A_2}{t_2 - t_0} = \frac{A_0 A_2}{2\tau - 0}$$

$$V_1 = \frac{(1+2) \div 100}{(2 \times 100) \div 1000}$$

$$V_1 = \frac{0.03}{0.2}$$

$$V_1=0.15m/s$$

1. Calculate the instantaneous speeds of the puck V_1 , V_2 and V_4 at A_1 , A_2 and A_4 respectively.

$$V_2 = \frac{A_1 A_3}{t_3 - t_1} = \frac{A_1 A_3}{3\tau - 1\tau}$$

$$V_2 = \frac{(2+3) \div 100}{(2 \times 100) \div 1000}$$

$$V_2 = \frac{(2+3) \div 100}{(2 \times 100) \div 1000}$$

$$V_2 = \frac{0.05}{0.2}$$

$$V_2 = 0.25 m/s$$

$$A_0$$
 A_1 A_2 A_3 A_4 A_5 A_6

1. Calculate the instantaneous speeds of the puck V_1 , V_2 and V_4 at A_1 , A_2 and A_4 respectively.

$$V_4 = \frac{A_3 A_5}{t_5 - t_3} = \frac{A_3 A_5}{5\tau - 3\tau}$$

$$V_4 = \frac{(4+5) \div 100}{(2 \times 100) \div 1000}$$

$$V_4 = \frac{0.09}{0.2}$$

$$V_4=0.45m/s$$

2. Calculate the acceleration $a_{1,2}$ and a_3 of the puck.

$$a_{1,2} = \frac{V_2 - V_1}{t_2 - t_1} \qquad \qquad \Rightarrow \qquad a_{1,2} = \frac{0.25 - 0.15}{2\tau - \tau}$$

$$a_{1,2} = \frac{0.2}{2\tau} = \frac{0.1}{100 \div 1000}$$
 $a_{1,2} = \frac{0.1}{0.1}$

$$a_{1,2}=1m/s^2$$

2. Calculate the acceleration $a_{1,2}$ and a_3 of the puck.

$$a_3 = \frac{V_4 - V_2}{t_4 - t_2}$$

$$a_3 = \frac{0.45 - 0.25}{4\tau - 2\tau}$$

$$a_3 = \frac{0.2}{2\tau} = \frac{0.2}{(2 \times 100) \div 1000}$$

$$a_3 = \frac{0.2}{0.2}$$

$$a_3 = 1m / s^2$$

3. Deduce the nature of motion of the puck.

Because the acceleration is constant and positive $(1m/s^2)$, then the motion is U.A.R.M.

4. Calculate the value of the initial speed V_0 .

$$V_2^2 - V_0^2 = 2ax$$
 $V_2^2 - V_0^2 = 2a(A_0A_2)$ $(0.25)^2 - V_0^2 = 2 \times 1 \times (3cm \div 100)$

$$0.0625 - V_0^2 = 2 \times 0.03 \qquad \qquad 0.0625 - V_0^2 = 0.06$$

$$0.0625 - 0.06 = V_0^2$$
 $\Rightarrow V_0^2 = 0.0025 \Rightarrow V_0 = 0.05m/s$

5. Write the expressions of the time equations x(t) and V(t) of the motion of the puck.

$$x = \frac{1}{2}a t^2 + V_0 t + x_0$$

$$x = \frac{1}{2}(1) t^2 + (0.05)t + 0$$

$$x = 0.5 t^2 + 0.05t$$

$$V = at + V_0$$

$$V = (1)t + 0.05$$

Prepared & Presented by: Mr. Mohamad Seif

1 Study the Uniformly Decelerated Rectilinear Motion (UDRM)

ACADEMY

A motion is said to be U.D.R.M if the <u>acceleration is</u> negative & constant ($\alpha < 0$).

• The distance covered during equal interval of time decrease:

$$A_0A_1 > A_1A_2 > A_2A_3$$

• The speed at different instants decreases with time:

$$V_3 < V_2 < V_1$$

Time equation Motion in distance x:

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

- a < 0: acceleration of motion of the body in m / s^2 .
- V_0 : initial speed of the body at the starting point in m/s.
- x_0 : The initial position of the body at the starting point in m.
- t: The time between initial point and reached point, in seconds

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

The speed time equation:

$$\mathbf{v} = \mathbf{at} + \mathbf{v_0}$$

The Relation of V and x is:

$$v^2 - v_0^2 = 2a(x - x_0)$$

Application 5:

A puck moves along a straight line having a time equation $x = -2t^2 + 20t$ in SI units.

1. Indicate the type of motion of the puck.

The motion of the puck is U.D.R.M, because the equation $(x = -2t^2 + 20t)$ in the form of $x = \frac{1}{2}at^2 + V_0t + x_0$ with a < 0.

2. Determine the value of V_0 and x_0 .

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

$$x = -2 t^2 + 20t$$

Compare

$$V_0 = 20m/s$$

$$ACADEMY x_0 =$$

$$x_0 = 0m/s$$

3. Calculate the acceleration of the puck.

$$x = \frac{1}{2}at^2 + V_0t + x_0$$

$$x = (-2)t^2 + 20t$$

Compare

$$\frac{1}{2}a = -2 \implies \frac{1 \times a}{2} + \frac{72}{1} \implies (1 \times a) \times 1 = -2 \times 2$$

$$a = -4m/s^2$$

4. Determine the position of body at t = 1s.

$$x = -2t^2 + 20t$$
 $\Rightarrow x = -2(1)^2 + 20(1)$ $\Rightarrow x = 18m$

5. Write the speed time equation of particle (S).

$$V = at + V_0$$

$$Be Smart$$

$$V = -4t + 20$$

$$A = -4t + 20$$

